If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=19Y^2+50Y+6
We move all terms to the left:
-(19Y^2+50Y+6)=0
We get rid of parentheses
-19Y^2-50Y-6=0
a = -19; b = -50; c = -6;
Δ = b2-4ac
Δ = -502-4·(-19)·(-6)
Δ = 2044
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2044}=\sqrt{4*511}=\sqrt{4}*\sqrt{511}=2\sqrt{511}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{511}}{2*-19}=\frac{50-2\sqrt{511}}{-38} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{511}}{2*-19}=\frac{50+2\sqrt{511}}{-38} $
| 3x=2x+9=10-14 | | -2l-14=1l | | x^2-2+2x-8=5 | | 18=-7m+4m | | 24x+8=26 | | 5x+4+2x-8=90 | | 4x+6-2x=5x | | 5-(7-y)=13 | | 30=6-9v | | 4x-6x+1=18 | | 41=3-(30-w) | | 12x+5=6x+5 | | 12=19-(7-h) | | 47=35-(18-a) | | 26-(11-n)=31 | | 5(2x-5)=-30 | | 18-(5-v)=27 | | 5(7-y)=13 | | 5-2n=(1/2)(3n-13) | | 5-2n=3n-13 | | 6+2m=0 | | -4+m-11=-64 | | 2(1x4)=12 | | -71+q+12=42 | | 12+r-5=31 | | 81=-29+z-11 | | 9(x+8)=11x-18+64 | | -12=16+f+48 | | -4(1n-6)=12 | | 7=-52+c+4 | | 36=-16+c | | 4+6(x)=92 |